On applying Neuro - Computing in E-com Domain
نویسنده
چکیده
Prior studies have generally suggested that Artificial Neural Networks (ANNs) are superior to conventional statistical models in predicting consumer buying behavior. There are, however, contradicting findings which raise question over usefulness of ANNs. This paper discusses development of three neural networks for modeling consumer e-commerce behavior and compares the findings to equivalent logistic regression models. The results showed that ANNs predict e-commerce adoption slightly more accurately than logistic models but this is hardly justifiable given the added complexity. Further, ANNs seem to be highly adaptive, particularly when a small sample is coupled with a large number of nodes in hidden layers which, in turn, limits the neural networks’ generalisability.
منابع مشابه
Neuro-fuzzy control of bilateral teleoperation system using FPGA
This paper presents an adaptive neuro-fuzzy controller ANFIS (Adaptive Neuro-Fuzzy Inference System) for a bilateral teleoperation system based on FPGA (Field Programmable Gate Array). The proposed controller combines the learning capabilities of neural networks with the inference capabilities of fuzzy logic, to adapt with dynamic variations in master and slave robots and to guarantee good prac...
متن کاملA Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis
Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...
متن کاملA Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis
Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...
متن کاملA Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)
Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...
متن کاملThe Effects of Various Stimuli on Motivation and Physical Fitness of Physically Active and Non-Active Students
Background. Execution of fitness testing in physical education classes is influenced by students’ motivation. Therefore, addressing new testing approaches seems necessary to more accurately measure student performance. Objectives. This study presents changes in fitness performance after applying a physical fitness tests battery (without external stimuli - WS) and with external stimuli (verbal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1206.1443 شماره
صفحات -
تاریخ انتشار 2011